

Analytics on AWS

Amazon Web Services Japan IoT/Al Solution Builder Team Mitsuaki Nakata

自己紹介

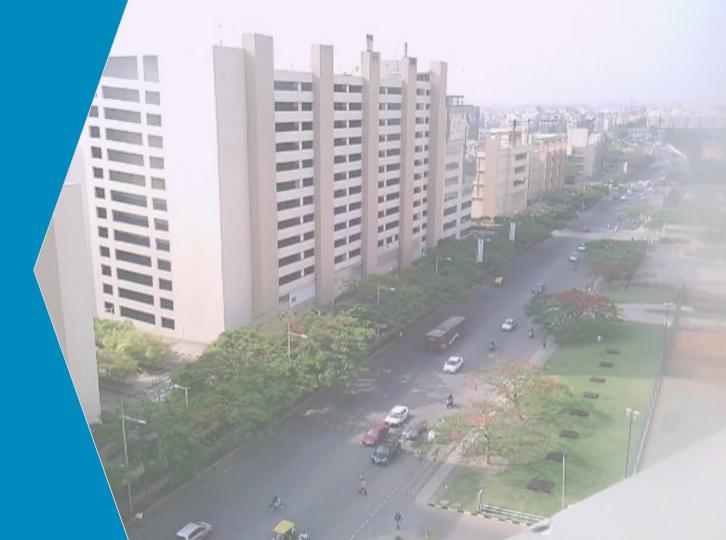
中田 光昭 (Mitsuaki Nakata) nmitsu@amazon.co.jp

IoT/AI Solution Builder Team Solutions Architect

IoT/AI関連プロジェクトのご支援など

Agenda

- ・ 機械学習の活用シーン
- アマゾンの機械学習


機械学習の活用シーン

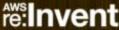
製造

交通

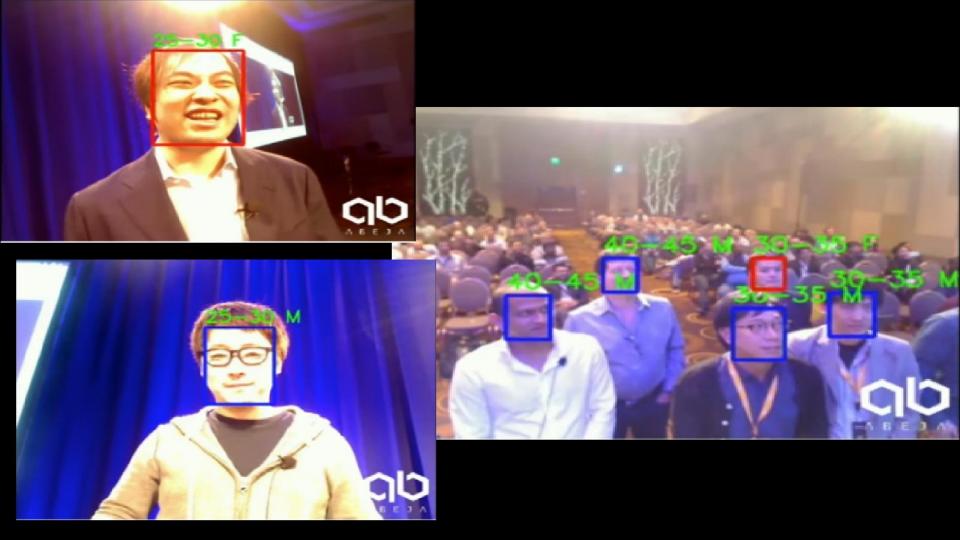
小売店舗

スマート ホーム

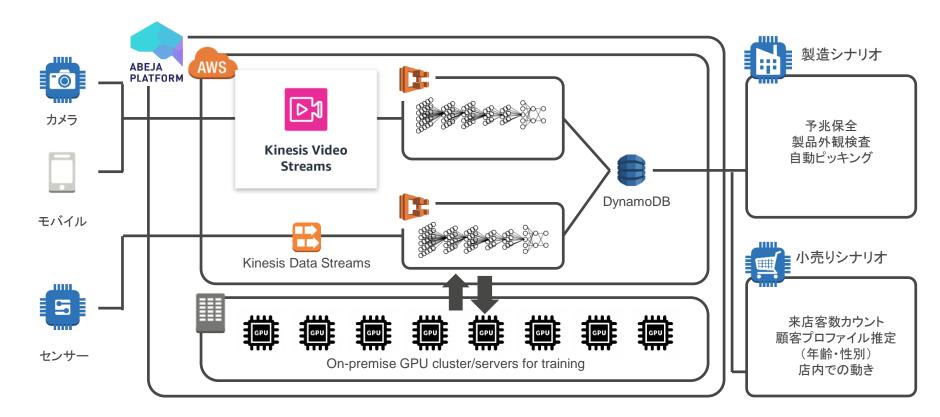
メディア

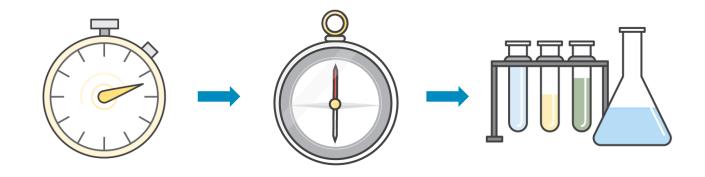


ABD216


AWS re:INVENT

Introducing Amazon Kinesis Video Streams


Roger Barga, General Manager of Amazon Kinesis, AWS Adi Krishnan, Head of Amazon Kinesis Video Streams, AWS Yousuke Okada, Founder & CEO, ABEJA, Inc. Toshiya Kawasaki, Platform Engineering Head, ABEJA Inc.



Kinesis Video Stream in ABEJA Platform

なぜクラウドを利用するのか?

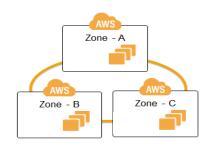
インフラにかける時間の削減

新規ビジネスに 集中

Innovationにかける リソースの増加

高いセキュリティ

データセンター:

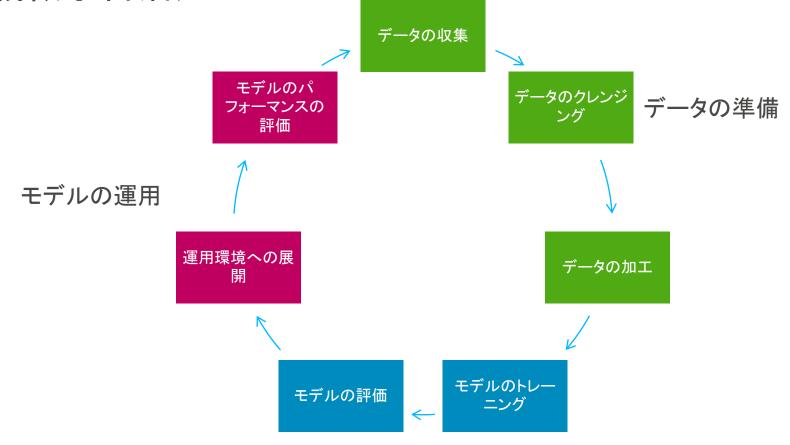

強固なデータセンターを 複数利用可能

セキュリティ技術:

堅牢なセキュリティ設定や暗号化、 多要素認証

数多くの第三者認証:

セキュリティ・コンプライアンスに関する、多く の第三者認証を取得



機械学習活用のプロセス

機械学習活用のプロセス

モデルの運用


データの収集

2,2015-12-01 00:00:00,2015-12-01 00:05:16,5,.96,-73.979942321777344,40.765380859375,1,N 2,2015-12-01 00:00:00,2015-12-01 00:00:00,2,2.69,-73.979335815429687,40.762378692626953 2,2015-12-01 00:00:00,2015-12-01 00:00:00,1,2.62,-73.968849182128906,40.764530181884766 1,2015-12-01 00:00:01,2015-12-01 00:05:56,1,1.20,-73.993934631347656,40.741683959960937 1,2015-12-01 00:00:01,2015-12-01 00:09:28,2,3.00,-73.988922119140625,40.72698974609375,

VendorID, tpep_pickup_datetime, tpep_dropoff_datetime, passenger_count, trip_distance, picku

データのクレンジ ング

データの準備

データの加工

Topic Approximation and Section 1. Section 1

運用環境への展 開

モデルのパ

フォーマンスの 評価

モデルの評価

 \leftarrow

モデルのトレー ニング

モデルのトレーニング

アマゾンの機械学習

アマゾンの機械学習の歴史

個人向け レコメンデーション

フルフィルメントの自動化 在庫管理

ドローン

音声ベースの 対話

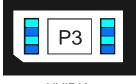
新しい顧客体験の 実現

アマゾン 機械学習スタック

APPLICATION SERVICES

PLATFORM SERVICES

FRAMEWORKS & INTERFACES



アマゾン 機械学習スタック

APPLICATION SERVICES PLATFORM SERVICES FRAMEWORKS & INTERFACES

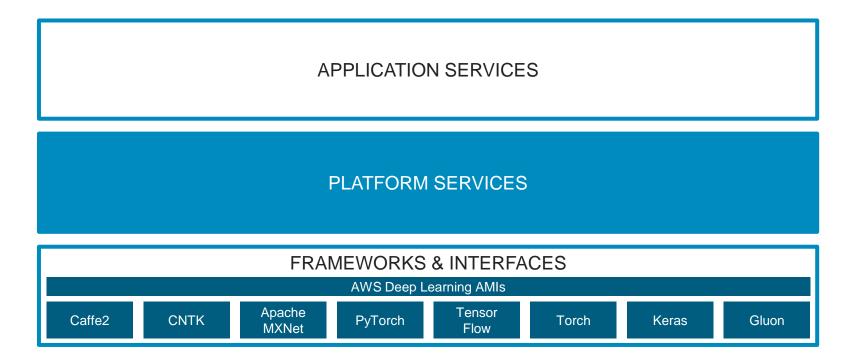
Frameworks & interfaces

NVIDIA Tesla V100 GPUs

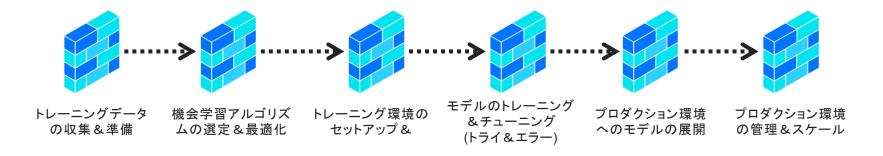
5,120 Tensor cores

128GB of memory

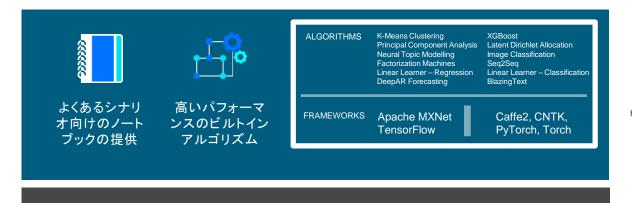
1 Petaflop of compute


NVLink 2.0

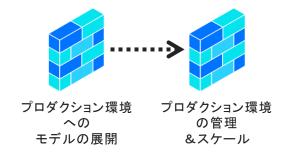
~14X faster than P2



アマゾン 機械学習スタック



Easily build, train, and deploy machine learning models



BUILD

BUILD TRAIN

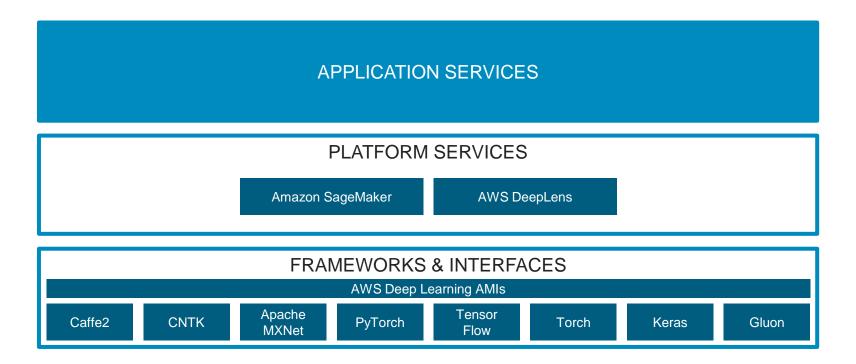
BUILD TRAIN DEPLOY

AWS DeepLens

機械学習を全ての開発者の手に

HD ビデオカメラ & ディー プラーニングに最適化され た内蔵コンピューティングリ ソース

Amazon SageMaker & AWS Lambdaとの統合


箱を開けてから最初の推 論を実行するまで <10 分

チュートリアル、サンプル、 デモ、ビルド済モデル群

アマゾン 機械学習スタック

Amazon Rekognition

深層学習に基づく画像&動画認識サービス

物体、シーン、 アクティビティの検出

顔認識

顔分析

人のトラッキング

有害なコンテンツの検知

有名人認識



文字認識

Amazon Rekognition

スピーチ & 言語 機能

Amazon Transcribe スピーチを正しい文法の文章に変換

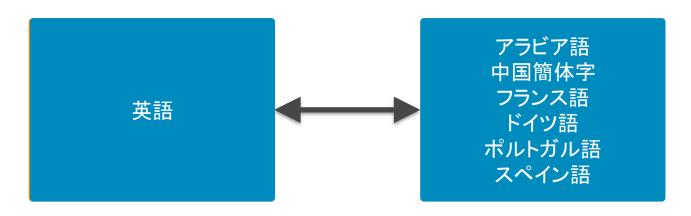
Amazon Translate 高品質な多言語間翻訳

Amazon Polly テキストをリアルな音声に変換

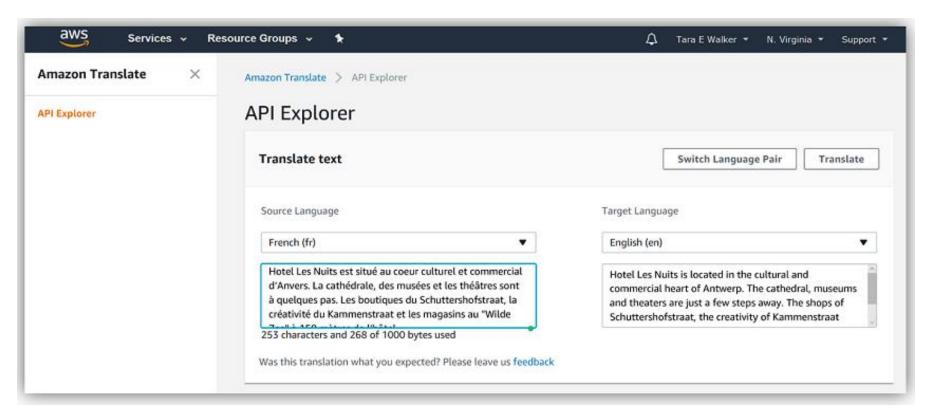
Amazon Comprehend テキストに対して、 さまざまな分析を実施

Amazon Lex 音声やテキストベースのアプリケーションに対話型インターフェイスを提供

Amazon Transcribe



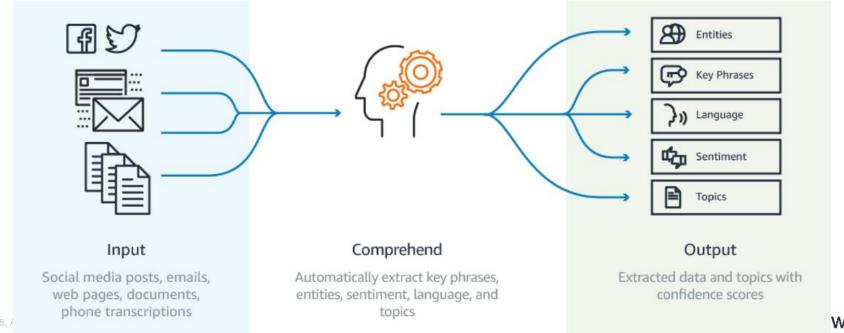
- スピーチを文章に変換するマネージドサービス
- リアルタイム処理のみならず, S3 に格納された音声データの処理もサポート
- プレビューでの対応言語は英語とスペイン語


Amazon Translate

- 深層学習に基づいた、高品質な多言語間翻訳サービス Amazon Translateのプレビューを開始
- Polly や Lex との連携による多言語対応サービスの構築が可能に
- バージニア北部、オハイオ、オレゴンでプレビューを提供

Amazon Translate

Amazon Polly



- テキストをリアルな音声に変換するサービス
- 25 の言語で 52 のリアルな声優の音声を提供
- 低レイテンシーで応答が速いため生成された音声の 保存とリプレイ、配信が可能

Amazon Comprehend

- 入力されたテキストに対して、さまざまな分析を実施
- 英語とスペイン語に対応

Amazon Comprehend

入力された文章の分析

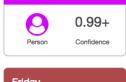
Amazon Comprehend

エンティティの抽出

Entity

List

 $This \ API \ returns \ the \ named \ entities \ ("Person", "Organization", "Locations", etc.) \ within \ the \ text \ you \ analyzed.$


Show all categories

Tiles

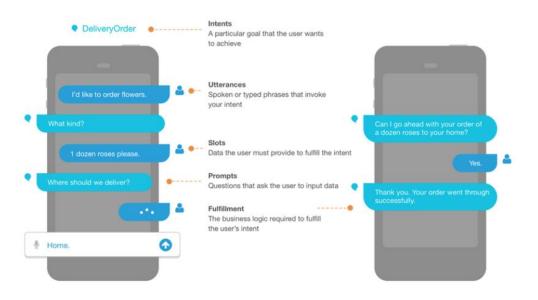
JSON

Shohei Ohtani

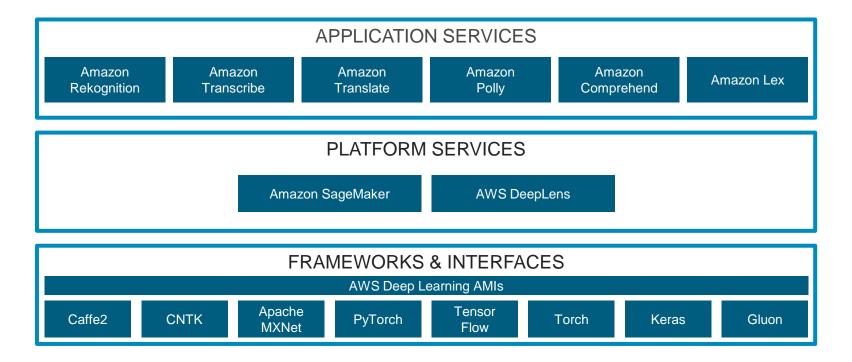
Major League				
+	0.76			
Event	Confidence			

キーフレーズの抽出

Key phrases

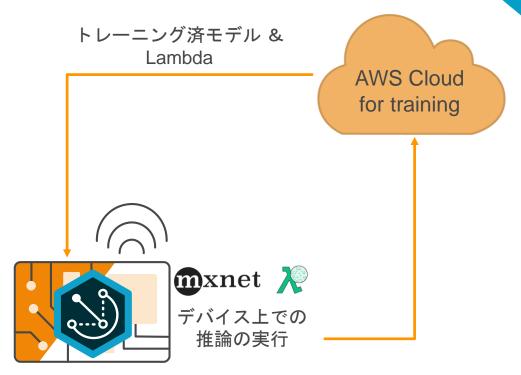

This API returns key phrases and a confidence score to support that this is a key phrase.

Key phrase	▼ Count	Confidence
the Hot Stove	1	0.94
all eyes	1	0.98
Japanese two-way star Shohei Ohtani	1	0.95
His Nippon Professional Baseball team	1	0.99
the Hokkaido Nippon-Ham Fighters	1	0.99
Friday	1	0.92
Ohtani	4	0.99
Dec. 22	1	0.93
a Major League team	1	0.97
his list	1	0.99
seven teams	1	0.99


Amazon Lex

• 音声やテキストを使用して、任意のアプリケーションに対話型インターフェイス(ボット)を構築するサービス

アマゾン 機械学習スタック


エッジデバイスとの連携

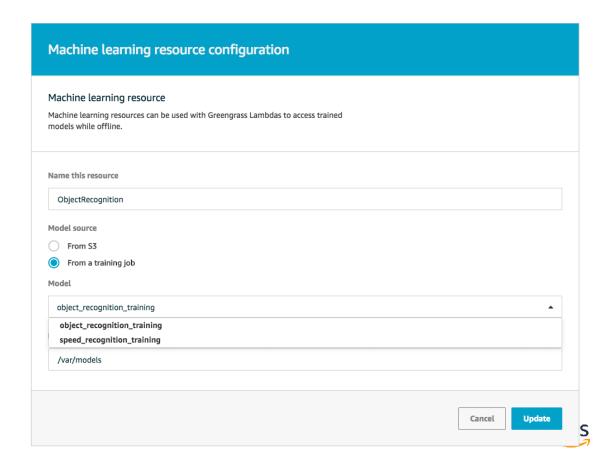
エッジ上での機械学習の実行を簡単 にする各種機能を提供

- クラウドで学習したモデルを簡単に デプロイ可能
- Apache MXNetをデバイスに簡単に 組み込める
- ローカルで機械学習の推論を行うための実装例を提供
- GPU/FPGA活用が可能

Machine Learning @Edge

AWS IoT, etc..

SageMaker


Greengrass ML Inference

学習済みモデルのデプロイ

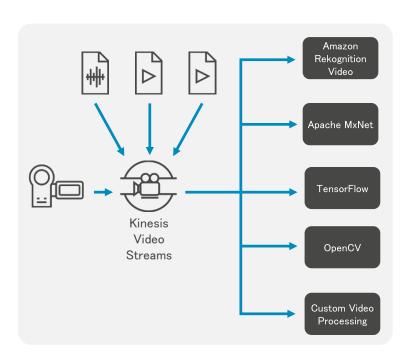
クラウドで学習したモデルをデバイス にデプロイ

- 「機械学習リソース」として学習済み モデルを Greengrass グループに追 加できる
- 設定したモデルが Greengrass デバイスにデプロイされる
- Greengrass コンソールからAmazon SageMaker の学習済みモデルを指定できる
- 独自のモデルを追加できる(MXNet などの ML フレームワークに依存し ない)

エッジデバイス側で推論を実行

推論を行う Lambda の実装例を提供

- 学習済みモデルの読み込み
- ローカルで生成されたデータをモデルに適応して推論
- 推論結果に応じたアクション


```
import mxnet as mx
import picamera
_prefix = "/trained_models/" # "local Path defined in Greengrass ML resource"
params_file = _prefix+"-0000.params"
symbol_file = _prefix+"-symbol.json"
sym, arg params, aux params = mx.model.load_checkpoint(_prefix, 0)
mod = mx.mod.Module(symbol=sym, label_names=label_names, context=context)
mod.bind(for_training=False, data_shapes= input_shapes)
mod.set params(arg_params, aux_params)
mod.forward(Batch([mx.nd.array(img)]))
```

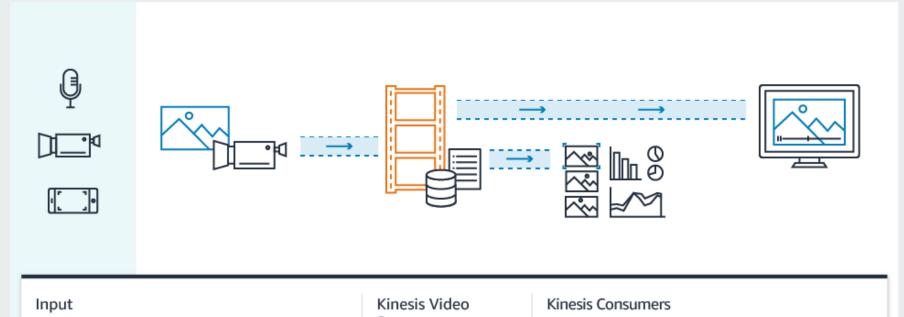
カメラデバイスとの連携

Amazon Kinesis Video Streams

動画ストリーミングの分析領域での活用

何百万ものデバイスからの動画ストリーミング

コンピュータービジョンアプリの容易な開発


高いセキュリティ

永続的、かつ検索可能なストレージ

サーバーレス

Amazon Kinesis Video Streams Concepts

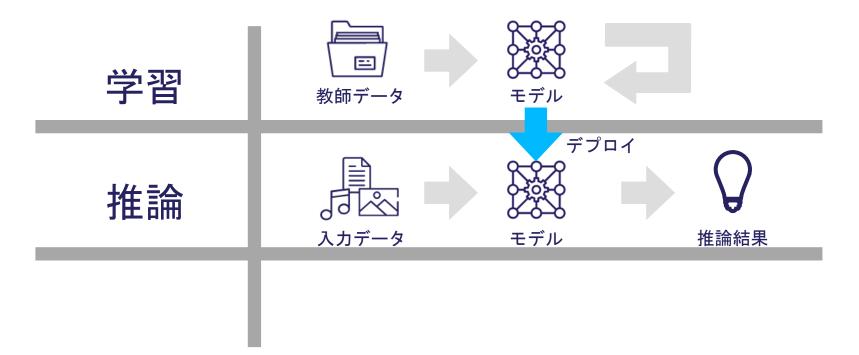
Kinesis Producerがデータを作成し、Kinesis Video Streamsに送信

Streams

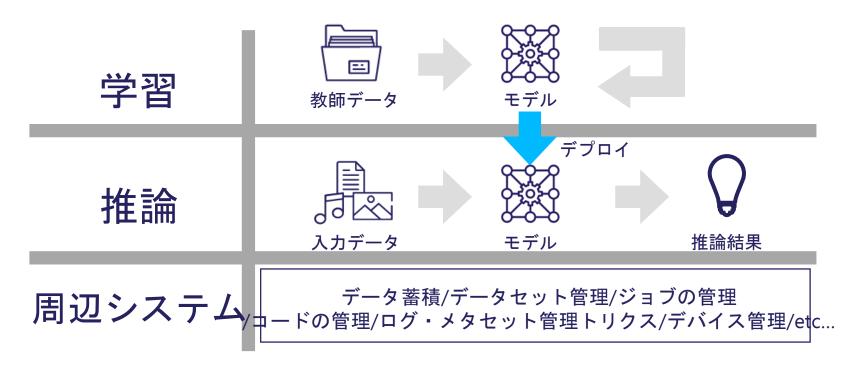
Kinesis Video Streams がストリームデータをイ ンデックス化して保存

Kinesis Consumerがス トリームを処理、分析 する

Kinesis Consumerがス トリームを要求し、表示


河崎敏弥 @toshitanian

ABEJA, Inc. Platform Division Software Engineer


- 創業1年のABEJAに参画
- Backend Engineer
 - Development on AWS
 - IoT Device
 - Container
 - Edge Computing

Machine Learning Process

Machine Learning Process + System

ABEJA Platform is built with

Amazon ECS

Amazon DynamoDB

Amazon Kinesis

AWS IoT

スキップ

あとで(保留)

送信

Shift + Space: スキップ

p:p 保留

Enter: 送信

dog cow kangaroo person horse crocodile bird sheep building cherryblossoms car train × person dog cow kangaroo sheep horse crocodile bird building cherryblossoms car train X dog kangaroo person horse crocodile bird sheep

BEJA PLATFORM	Six Demo Org →	▼ Demo User				o User	
ItaLake Inotation ♂	RUNNING	#205パラメータCにしました(4) example@example.com	Progress 80.5 %			ver. 1.4.1	⊙ 9d 03:04:32 ▼ 9 days ago
Job Definition Job odel	RUNNING	#204パラメータCにしました(3)	9 Progress 70.5 % ■ Epochs 4 / 60	Training Accuracy 84.5 % Loss 5.6 %	Validation ✓ Accuracy 76.5 % × Loss 10.6 %	ver. 1.4.1	⊙ 9d 03:04:32 ▼ 9 days ago
ganization	O RUNNING	#203パラメータCにしました(2) O example@example.com	Progress 70.5 % Epochs 19 / 60	Training Accuracy 84.5 % Loss 5.6 %	Validation ✓ Accuracy 76.5 % × Loss 10.6 %	ver. 1.4.0	⊙ 9d 03:04:32 ▼ 9 days ago
ers	1 CANCELED	#202 パラメータCにしました O example@example.com	Progress 70.5 % Epochs 19 / 60	Training Accuracy 84.5 % Loss 5.6 %	Validation ✓ Accuracy 76.5 % × Loss 10.6 %	ver. 1.3.1	⊙ 1d 09:00:00 ▼ 11 days ag
	S FAILED	#201パラメータBにしました Sexample@example.com	Progress 0% Epochs 0/60	Training Accuracy 84.5 % Loss 5.6 %	Validation ✓ Accuracy 76.5 % × Loss 10.6 %	ver. 1.3.0	⊙ 09:00:00 ▼ 3 months ago

Complementary Services

DATA LAKE STORAGE

Amazon S3

SECURITY

Access Control Amazon Macie Encryption AWS Organizations

COMPUTE

Powerful GPU and CPU Instances

ANALYTICS

Amazon Athena Amazon Redshift and Redshift Spectrum Amazon EMR (Spark, Hive, Presto, Pig) AWS Glue Amazon Kinesis Amazon QuickSight

Complementary Services

DATA LAKE STORAGE

Amazon S3

SECURITY

Access Control Amazon Macie Encryption AWS Organizations

COMPUTE

Powerful GPU and CPU Instances

ANALYTICS

Amazon Athena Amazon Redshift and Redshift Spectrum Amazon EMR (Spark, Hive, Presto, Pig) AWS Glue Amazon Kinesis Amazon QuickSight

AWS ML Platform

APPLICATION SERVICES

Amazon Lex Amazon Transcribe
Amazon Polly Amazon Rekognition Image
Amazon Comprehend Amazon Rekognition Video
Amazon Translate

PLATFORM SERVICES

Amazon SageMaker AWS DeepLens

FRAMEWORKS AND INTERFACES

AWS Deep Learning AMI

Apache MXNet

Caffe2

CNTK

PyTorch

TensorFlow

Theano

Torch

Gluon

Keras

Complementary Services

DATA LAKE STORAGE

Amazon S3

SECURITY

Access Control Amazon Macie **AWS Organizations** Encryption

COMPUTE

Powerful GPU and CPU Instances

ANALYTICS

Amazon Athena Amazon Redshift and Redshift Spectrum Amazon EMR (Spark, Hive, Presto, Pig) **AWS Glue** Amazon Kinesis Amazon QuickSight

AWS ML Platform

APPLICATION SERVICES

Amazon Transcribe Amazon Lex Amazon Polly Amazon Rekognition Image Amazon Comprehend Amazon Rekognition Video Amazon Translate

PLATFORM SERVICES

Amazon SageMaker AWS DeepLens

FRAMEWORKS AND INTERFACES

AWS Deep Learning AMI

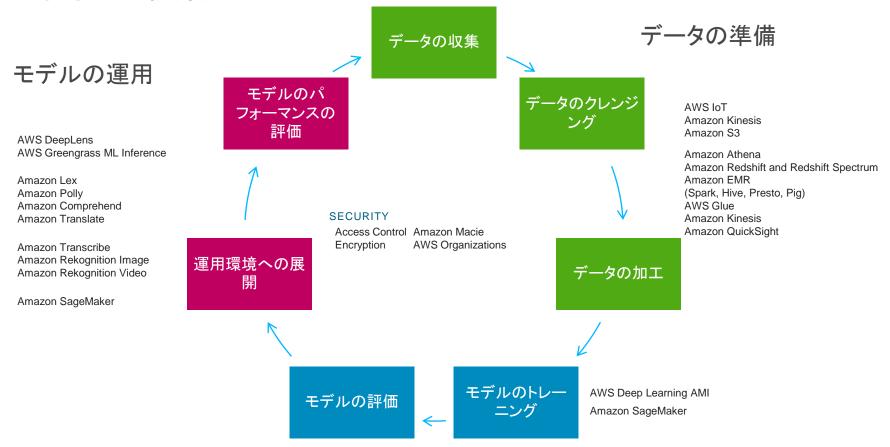
Apache MXNet Caffe2

CNTK

PvTorch

TensorFlow

Theano


Torch

Gluon Keras

AWS ML Customers

Summary

- 機械学習活用シーンは増加している
- 機械学習活用のためのプロセスの理解が重要
- プラットフォームの利用することで機械学習活用を加速

Thank you!

